Greater Hunter landscape connectivity assessment

Report by:
Alex M Lechner and Edward C Lefroy

May 2015
Greater Hunter landscape connectivity assessment

Enquiries to: a.lechner@uq.edu.au

© University of Tasmania

This work is copyright. It may be produced in whole or in part for study or training purposes subject to the inclusion of an acknowledgement of the source. It is not intended for commercial sale or use. Reproduction for other purposes other than those listed above requires the written permission from the authors.

Requests and enquiries concerning reproduction rights should be addressed to:

Hub Director
Landscapes and Policy Hub
Private Bag 141, Hobart Tasmania 7001
Tel: +61 3 6226 2626
Email: Landscapes.Policy@utas.edu.au

Purpose of Report

The report presents findings of the project Applying the Principles of the National Wildlife Corridors Plan to Regional Sustainability Planning. The project developed a framework for regional planners to use best practice science in their regional-scale planning of wildlife connectivity networks. The report presents outlines of connectivity mapping of the Greater Hunter, an extension of the previous Lower Hunter mapping conducted in the project.

The report is an output of the Landscapes and Policy Research Hub.

Please cite the report as follows:

About the Authors

Alex Lechner is a landscape ecologist, currently at the University of Queensland and previously with the NERP Landscapes and Policy Research Hub.

Professor Ted Lefroy is the director of the Centre for Environment at the University of Tasmania and director of the NERP Landscapes and Policy Research Hub.

Acknowledgements

This project was funded by the Australian Government Sustainable Regional Development Program in conjunction with the National Environmental Research Program. The report is an output from the Landscapes and Policy Research Hub.

The authors are grateful for the generous support they received from Meredith Laing and Ellen Saxon (Hunter & Central Coast Regional Environmental Management Strategy), Robbie Economos (Lake Macquarie City Council), and Veronica Doerr and Erik Doerr (CSIRO).

We also thank the numerous people who provided expert advice and feedback on the first report. We appreciate the privileged opportunity to work with the Department of the Environment’s Regional Development Program team.

Finally, many thanks also to Suzie Gaynor, Communications Manager for the Landscapes and Policy Hub, for preparing this report for publication.

www.lifeatlarge.edu.au
Contents

1.0 Introduction ..3
 1.1. Connectivity modelling background...3
 1.2. General Approach – mapping woody vegetation...3
 1.3. Objectives..4

2.0 Methods..5
 2.1. Study area ...5
 2.2. GAP CLoSR ...6
 2.3. Focal conservation target and parameterisation ...7
 2.4. Dispersal-cost surface ...8
 2.5. Regional connectivity model using Graphab..12

3.0 Results...15
 3.1. Visual assessment of connectivity across the Greater Hunter ..15
 3.2. Patch-scale graph metric analysis ..17

4.0 Discussion...25
 4.1. Overview ..25
 4.2. Conclusions ..25

References...26
1.0 Introduction

1.1. Connectivity modelling background

Changes to the extent and patterns of vegetation from human landuse have resulted in fragmented habitat for native species. Restriction of species movement caused by increased fragmentation or decreased connectivity through the alteration of landcover reduces population viability, increasing extinction risk (Caughley 1994; Fischer & Lindenmayer 2006; Brook et al. 2008). Landscape planning to address changes to the patterns and types of land cover is critical for reducing the impact of fragmentation on connectivity.

A range of approaches to connectivity modelling can be used to characterise connectivity for the assessment of the impacts of fragmentation and to identify critical elements in a connectivity network for conservation and restoration. These approaches include least-cost path analysis, graph theory and Circuit theory, each of which model different aspects of connectivity (Urban & Keitt 2001; Adriaensen et al. 2003; McRae et al. 2008; Foltête et al. 2012). Least-cost path analysis characterise non-habitat/matrix based on dispersal costs which represent the energetic costs, difficulty, or mortality risk of moving across these areas (Adriaensen et al. 2003; Sawyer et al. 2011). Dispersal costs are determined by land cover characteristics, such as the degree of urbanisation or agricultural intensification. Using least-cost path analysis, links between patches of suitable habitat can be identified. The importance of patches and the arrangement of patches within a connectivity network can be quantified using the graph theoretic approach through the calculation of network measures (Minor & Urban 2008; Rayfield et al. 2011).

1.2. General Approach – mapping woody vegetation

Our approach to modelling connectivity is based on a conceptual model describing fine-scale dispersal behaviour outlined by review conducted by Doerr et al. (2010). This review synthesised all available evidence on the relationship between structural connectivity and landscape-scale dispersal of Australian native fauna species. From the review three key important parameters were identified which can be used in spatially explicit models to characterise dispersal. This conceptual model is the basis for the General Approach to Planning Connectivity from Local-scales to Regional (GAP CLoSR) connectivity modelling framework (Lechner & Lefroy 2014; Lechner et al. 2015b) (Figure 1):

1. A minimum patch size below which the patch cannot support a population.
2. A gap-crossing distance threshold, between connectivity elements such as scattered trees, which limit the distances of open ground (gaps) which individuals will move across.
3. An interpatch-crossing distance threshold above which fauna cannot move between patches.
Figure 1: Conceptual model of fine connectivity behaviour where the likelihood of individuals moving between two patches is a property of two thresholds - the Interpatch-crossing distance and gap-crossing distance and the dispersal cost of landcover features (such as roads).

A critical component of the GAP CLoSR framework is the inclusion of fine-scale dispersal behaviour that is often absent from many common connectivity modelling approaches. In order for species to move long distances between patches there is a need for structural connectivity elements such as corridors, or stepping stones to facilitate movement (Fischer & Lindenmayer 2002; Van Der Ree et al. 2004).

1.3. Objectives

The objective of this study was to build on the existing Lower Hunter analysis of connectivity (Lechner & Lefroy 2014) using GAP CLoSR, expanding the analysis to the Greater Hunter. At the regional scale GAP CLoSR uses the Graphab graph theoretic connectivity model (Foltête et al. 2012) to characterise connectivity. The focus of this study was to provide a strategic broad-scale overview of connectivity to guide regional planning. We modelled connectivity using a generalised native woody vegetation versus non-vegetation approach. This approach assumes that our model characterises habitat and connectivity for the majority of the native fauna species that utilise woody native vegetation and the plant species that depend on these fauna for dispersal. We characterise patch isolation and connectivity characteristics using graph-metrics across the region and conclude by discussing these results in terms of conservation planning.
2.0 Methods

2.1. Study area

The Greater Hunter Region occurs in New South Wales, Australia, approximately 100 km north of Sydney. It covers a total area of approximately 34,851 km², approximately the size of the land mass of Netherlands. The Greater Hunter has a range of environments including highly urbanised areas, farmlands, mountain ranges and coastal and estuarine environments. This region is expected to see a high level of population growth resulting in increasing pressure on the environment and is also a future growth area for the expansion of coal mining (NSW Department of Planning 2006).

Figure 2: True colour remote sensed imagery with study boundary.
2.2. GAP CLoSR

In this report we use the GAP CLoSR framework (Lechner & Lefroy 2014) to map regional scale connectivity to support landuse planning. The framework includes:

a) a workflow that includes the identification of key ecological connectivity parameters and describes how to pre-process spatial data accordingly (Figure 3);

b) GIS tools for pre-processing spatial data based on these parameters; and

c) a method for running these spatial data within existing connectivity modelling software and how to interpret the outputs for conservation planning.

The regional scale model uses Graphab (Foltête et al. 2012), a graph-network connectivity model with least-cost paths. The model is parameterised in a way that accounts for threshold dynamics in dispersal behaviour. In cases where distances between patches are less than the interpatch-crossing distance threshold and accounting for dispersal costs connectivity will be characterised by a single optimal least cost path patches. Details of the modelling method can be found in Lechner and Lefroy (2014) and Lechner et al. (2015b). GAP CLoSR also includes local-scale analysis using Circuitscape (McRae et al. 2008) to describe a total surface of connectivity. However, this type of analysis is suited to responding to specific planning questions such as assessing the impact of a property development on connectivity within a property and on the surrounding landscape. In this report we do not include Circuitscape outputs, however, we recognise that it is an important part of the GAP CLoSR method.
2.3. Focal conservation target and parameterisation

For this report, we mapped connectivity using a general connectivity modelling approach where connectivity was characterised between patches of remnant woody vegetation. These patches are likely to be suitable for the majority of faunal native species in the region and plant species that depend on these fauna for dispersal. Limitations of using these data are described in Lechner and Lefroy (2014).

The connectivity model was parameterised using dispersal values identified in Doerr et al.’s (2010) (Table 1) systematic review of how structural connectivity facilitates dispersal. This review of 80 studies (from 98 sources) derived average values for the gap-crossing distance and interpatch-crossing distance threshold. Of the studies reviewed, 41 provided data on mammals, 32 provided data on birds, 8 provided data on reptiles and
5 provided data on plants and invertebrates respectively. These values were relevant to our case study region as the majority of the studies reviewed were in similar woodland and forested ecosystems impacted by fragmentation primarily from agriculture.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Parameters used to describe dispersal based on Doerr et al. (2010). Values with * are cited in Doerr et al (2010) but not the result of the systematic review.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat patch size</td>
<td>Doerr et al. (2010)</td>
</tr>
<tr>
<td>Interpatch-crossing distance threshold</td>
<td>10 - 20 ha* (10 ha used)</td>
</tr>
<tr>
<td>Gap-crossing distance threshold</td>
<td>1.1 km</td>
</tr>
<tr>
<td>106 m</td>
<td></td>
</tr>
</tbody>
</table>

2.4. Dispersal-cost surface

The dispersal-cost surface characterises how landcover between habitat patches reduce or prevent movement up to the interpatch-crossing distance threshold. The dispersal-cost surface is a property of a gap-crossing layer and landcover resistance surface.

2.4.1. Gap crossing layer

The gap-crossing distance threshold distance layer was simulated through the creation of a spatial binary gap-crossing layer. This layer identifies distances between structural connectivity elements and patches beyond the gap-crossing distance threshold of 106 m. These areas beyond the threshold are treated as barriers to movement.

To create this layer the input vegetation layers is buffered by half of the gap-crossing distance threshold (Figure 4). If vegetation is located within the gap-crossing distance threshold, the buffers will touch or overlap, meaning there will be no break in the gap-crossing layer pixels between two pixels of vegetation and thus connectivity will be possible. Areas mapped outside the buffer area describe areas in which dispersal cannot take place.
Figure 4: Example of the gap crossing layer (adapted from Lechner et al. in press). Vegetation is buffered by half the gap-crossing distance threshold. a) 53 m buffer around vegetation to simulate 105 m gap-crossing distance. b) gap-crossing layer with example of how least-costs paths are modelled using the layer.

2.4.2. Landcover resistance surface

Resistance to dispersal between patches is a property of how landcover decreases interpatch – crossing distances as a property of the pixel size. For example, if high resistance land cover doubled movement cost, the interpatch-crossing distance threshold would be reduced from 1.1 km to 550 m. In the Hunter we used generic landcover classes to describe resistance (see Lechner & Lefroy 2014 for more details): Hydrology, Transport, Infrastructure and Other. Where ‘Other’ refers to areas that are predominantly farmland and represent areas where movement up to the 1.1 km threshold is possible (Table 2, Figure 5).
Table 2: Land cover resistance and dispersal cost in metres for four different land cover classes in areas that have connectivity elements present or absent.

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Default Resistance Case</th>
<th>50 m pixel value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural connectivity present</td>
<td>All</td>
<td>Infinite</td>
<td>Areas without gap crossing features at the gap crossing threshold</td>
</tr>
<tr>
<td>Structural connectivity present</td>
<td>Other</td>
<td>100%</td>
<td>Other land use – predominantly agricultural or grazing areas.</td>
</tr>
<tr>
<td>Structural connectivity present</td>
<td>Hydrology</td>
<td>300%</td>
<td>Water bodies such as rivers and lakes</td>
</tr>
<tr>
<td>Structural connectivity present</td>
<td>Transport</td>
<td>200%</td>
<td>Roads and train lines</td>
</tr>
<tr>
<td>Structural connectivity present</td>
<td>Infrastructure</td>
<td>200%</td>
<td>Urban and industrial areas</td>
</tr>
</tbody>
</table>

Figure 5: Land cover map of resistance categories.
2.4.3 Calculating dispersal resistance surface

In the final step, the dispersal cost surface was created by combining the binary gap-crossing layer with the resistance surface based on land cover. These pixels were aggregated to 50 m from the original higher resolution 2.5 m pixels in order to reduce computational demands on the connectivity model.

The dispersal cost pixel values are a function of:

a) pixel size (if the pixel size is 25 m and there is no resistance the cost should be 25 m)
b) land cover resistance (200% resistance means a pixel size with of 30 m will have a value of 60 m)
c) the presence of structural connectivity elements identified with the gap-crossing layer

Below is a summary of the processing ruleset to derive the dispersal cost values for an aggregated pixel:

a) Structural connectivity elements at the gap-crossing distance takes precedence over all other land cover classes, because dispersal cannot occur in the absence of structural connectivity. Pixels that have structural connectivity at the gap crossing distances were given a value of one and the other pixels were given a value of zero. Thus, pixels with a value of zero represent areas where dispersal cannot take place. The value of the aggregated pixel was based on the majority of the fine-scale pixel values. This differs from the previous Lower Hunter analysis (Lechner & Lefroy 2014) where if any fine-scale (2.5 m for example) pixels had a value of zero (no connectivity) the aggregated pixel value was also zero – a more cautious approach to modelling connectivity.

b) The dispersal cost for a single aggregated pixel is calculated as an average of all land covers except if a there are no barriers identified by the gap-crossing layer (as described in the above steps).

The resulting dispersal resistance surface is a layer that recognises threshold dynamics by ensuring there is no dispersal where gaps are too large between connectivity elements, but still models cumulative costs where dispersal is considered possible but may be impeded by land use.
2.5. Regional connectivity model using Graphab

The graph theoretic approach with the Graphab software (Foltête et al. 2012) was used to represent the landscape as a network of habitat patches greater than 10 ha connected by least-cost paths (Minor & Urban 2007; Dale & Fortin 2010; Etherington & Penelope Holland 2013). Patches that are connected to each other, but isolated from other patches, are known as components. Whether a patch is connected to another patch is a function of:

- Distances between patches
- Interpatch-crossing distance threshold
- The resistance of the landcover
- Presence of structural connectivity at the gap-crossing distance threshold

The two inputs into the Graphab software were the habitat layer (patches >10 ha) and the dispersal cost surface with pixel size of 50 m. We found that 50 m was the finest pixel size that could be processed by the Graphab connectivity software in the Tasmanian Midlands.

A range of methods can be used to interpret the outputs of the connectivity model (Figure 6). These methods include visual assessments based on the patterns of connections and components and quantitative methods using graph metrics (Urban et al. 2009; Rayfield et al. 2011) (see Lechner & Lefroy 2014 for more detail). Patch-scale graph metrics are calculated for each patch to describe the role of a patch in the provision of connectivity for a whole network. We also calculated simple landscape-scale graph metrics describing the characteristics of components such as mean component size. Both landscape- and patch-scale graph metrics are described in Table 3.

![Figure 6: Regional and local-scale analysis using the graph theoretic approach available with the Graphab software.](image-url)
Table 3 Landscape (network) and patch-scale graph metrics used in the study with their ecological significance and definition and source. Δ graph metrics are calculated as using a removal method that calculates the relative importance of each patch as the rate of variation in the global metric resulting from their removal. These Δ -metrics describe values for a patch with reference to the landscape scale (adapted from Rayfield et al 2011; Foltête et al 2012; Lechner & Lefroy 2014).

<table>
<thead>
<tr>
<th>Graph metric</th>
<th>Ecological Significance and definition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape-scale graph metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean Size of Components (km²)</td>
<td>Simple measure that describes the average component area. Useful for describing the level of isolation between groups of landscape patches.</td>
<td>(Urban & Keitt 2001)</td>
</tr>
<tr>
<td>Size of Largest Component (km²)</td>
<td>A simple measure that describes the area of the largest component. Useful for describing the level of isolation between groups of landscape patches.</td>
<td>(Urban & Keitt 2001)</td>
</tr>
<tr>
<td>Number of Components</td>
<td>Simple measure that describes the number of isolated areas in the landscape. High number of components to total number of patches indicate that the landscape is highly fragmented. Useful for describing the level of isolation between groups of landscape patches.</td>
<td>(Urban & Keitt 2001)</td>
</tr>
<tr>
<td>Patch-scale graph metrics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betweenness Centrality (BC)</td>
<td>Number (or proportion) of pairwise geodesic pathways in a network that use the path. A useful indicator of which patches are stepping stones for dispersal.</td>
<td>(Bodin & Norberg 2007; Minor & Urban 2008)</td>
</tr>
<tr>
<td>Node flux (Flux)</td>
<td>Sum of the fluxes for all incoming links adjacent to a path. Where the dispersal flux of a link is calculated as the area of patches adjacent to the link multiplied by the probability of dispersal between patches. Describes the rate of movement between a patch and its neighbours.</td>
<td>(Urban & Keitt 2001; Minor & Urban 2007)</td>
</tr>
<tr>
<td>Clustering coefficient (ClusCoe)</td>
<td>Measures the level of redundancy within a network. High values indicate that alternative paths exist and pathways through the focal patch is not unique. Average proportion of a focal patches neighbouring patches that are also neighbouring patches with each other.</td>
<td>(Ricotta et al. 2000; Minor & Urban 2008)</td>
</tr>
<tr>
<td>Closeness centrality (ClosCen)</td>
<td>Mean geodesic distance of a patch to all reachable patches. Describes whether a patch occupies a central position in the habitat network due to their proximity to other habitat patches.</td>
<td>(Urban et al. 2009)</td>
</tr>
<tr>
<td>Graph metric</td>
<td>Ecological Significance and definition</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Patch-scale graph metrics (cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectivity correlation (ConCorr)</td>
<td>Indicates the degree of compartmentalisation or presence of sub-networks. Important for reducing the spread of cascading disturbances such as fires or invasive species. Average degree of focal patch relative to the average degree of its neighbours.</td>
<td>(Minor & Urban 2008)</td>
</tr>
<tr>
<td>Node Degree (NodeDeg)</td>
<td>Characterises connectedness of a focal patch and its potential accessibility. For example, a node degree of zero indicates that the patch is a dead end in a pathway. A simple metric describing the number of links associated with a focal patch.</td>
<td>(Ricotta et al. 2000)</td>
</tr>
<tr>
<td>Eccentricity (Eccen)</td>
<td>Largest geodesic distance between the patch and all other patches. Describes maximum isolation.</td>
<td>(Bunn et al. 2000; Urban & Keitt 2001)</td>
</tr>
<tr>
<td>Δ Integral index of connectivity (d IIC)</td>
<td>The IIC refers to the probability that two dispersers randomly located in the landscape within a patch can access each other. Higher value indicate greater connectivity.</td>
<td>(Pascual-Hortal & Saura 2006)</td>
</tr>
<tr>
<td>Δ Graph diameter (GraphDia)</td>
<td>Diameter of largest component. Describes the compactness of a habitat network.</td>
<td>(Saura & Pascual-Hortal 2007; Minor & Urban 2008)</td>
</tr>
<tr>
<td>Δ Harary Index (Harary)</td>
<td>The number of patches that contribute to linking patches across the landscape. High value indicate a highly connected landscape.</td>
<td>(Ricotta et al. 2000)</td>
</tr>
</tbody>
</table>
3.0 Results

3.1. Visual assessment of connectivity across the Greater Hunter

Woody vegetation in the Greater Hunter is predominantly found within two large components in the east and the west of the Greater Hunter (Figure 7). These components are made up of large contiguous patches. The component to the east includes 1527 patches and had a total area of 8599 km², comprising approximately ~53% of the total area of vegetation in the Greater Hunter. The component to the west includes 545 patches and had a total area of 6977 km², comprising approximately ~43% of the total area of vegetation in the Greater Hunter. The remaining components comprise ~4% of the total area and found within small components in the central region of the Greater Hunter in the low lying value floor from Muswellbrook to Maitland and finally Newcastle. This area is highly fragmented made up of small components comprising a small number of patches. If we expand our view to outside of the study area (Figure 8), the fragmented central region of Greater Hunter represents a barrier in the Great Eastern Ranges corridor initiative that runs north to south along the Great Divide.
Figure 7: Assessment of regional connectivity where barriers to connectivity are visualised through the identification of component boundaries. Components represent patches that are linked to each other but isolated from other patches in different components.

Interpreting blue component lines.
The blue lines are used to identify which patch are part of the same component. The location of the lines are for visualisation purposes only. The lines are found at the midpoint between patches from different components.

Figure 8: State-wide context for connectivity. The Greater Hunter region is a key barrier for connectivity within the Great Eastern Ranges national wildlife corridor scheme the runs north to south along the Great Divide.
The graph of the cumulative distribution of patch area shows that the 4 largest patches include 50% of the total area and the top 24 patches comprise 80% of the total area (Figure 9). Within the Greater Hunter the model identified 250 components and 2876 patches.

![Graph](image)

Figure 9 Plot of the proportion of total number of patches plotted against the cumulative patch area.

3.2. Patch-scale graph metric analysis

We produced a number of maps of the describing the distribution of graph metrics values for each patch (Figure 10 - Figure 15). For each patch-metric importance for dispersal is characterised with larger symbols representing the higher values of the patch for dispersal. These patch values are useful for interpreting spatial priorities. For visualisation purposes, the patch values were categorised with graduated symbols. In some cases, the categories were based on quantiles - normalising values. Quantisation was conducted as some patch-metrics had clumped distributions with lots of high or low values but nothing in between. Where the patch-metric values were distributed evenly, the categories were based on equal intervals. If possible
accessing the original spatial data and reclassifying according to a specific planning problem is better solution than only using the regional scale maps.

The first graph metric mapped (Figure 10), the integral index of connectivity (delta IIC), is a good overall measure and represents the reachability of habitat across the landscape as a property of the connection between patches and the area of habitat provided by each patch. Formally it can be defined as the probability that two points randomly placed within a landscape fall into habitat areas that can be reached (Pascual-Hortal & Saura 2006). IIC is suited to the GAP CLoSR parameterisation as it is based on a binary dispersal model where patches are either connected or not due to the interpatch dispersal distance threshold. Values for this metric increase with greater connectivity from zero to one. The larger patches in the Greater Hunter dominate the delta IIC values as they connect many patches in the landscape and also hold the largest area.

Figure 10: Regional-scale connectivity analyses based on least–cost paths for patches greater than 10 ha using Graphab. Circular graduated symbols located at the centre of patches describe the d IIC, a measure of the probability that two dispersers randomly located in the landscape within a patch can access each other.
We calculated 12 patch-scale graph-metrics (including d IIC) to describe the range of responses of the graph metrics to functional connectivity in the Greater Hunter. While each graph-metric is calculated based on unique equations describing the topological relationship between patches and their properties the responses of these metrics to landscape pattern were correlated (similar). A simple method for providing a broad assessment of all of the graph-metric responses is through a principle components analysis (PCA) (Figure 11). The PCA analysis found three groups of correlated graph metrics. The first group includes only the clustering coefficient, the second group includes closeness centrality, flux and eccentricity and the final group included all the rest of the graph-metrics including area.

We produced a number of maps describing the distribution of graph metrics values for groups 1 and 2 graph metrics: clustering coefficient, closeness centrality, flux and eccentricity (Figure 12 - Figure 15). Group 3 graph-metrics had similar patterns to area and the d IIC (Figure 12). The clustering coefficient tended to rank small patches highly, which connect many patches. These high-ranking patches were commonly found in highly fragmented areas. The clustering coefficient identifies patch redundancy only on the connections to neighbouring patches (not the whole network). Thus, its characteristics are quite unique as most graph-metrics are calculated as a property of the whole network. The group 2 graph-metrics (Figure 13 - Figure 15) showed a range of responses, but in most cases, patches within the eastern component appeared to on
average have higher values. The eastern component has more connections and more patches and thus graph-metric values for these patches were higher.

Figure 12: Regional-scale connectivity analyses based on least–cost paths for patches greater than 10 ha using Graphab. Circular graduated symbols located at the centre of patches describe the Clustering Co-efficient, which is a measure of patch redundancy in a connectivity network.
Figure 13: Regional-scale connectivity analyses based on least-cost paths for patches greater than 10 ha using Graphab. Circular graduated symbols located at the centre of patches describe the Closeness centrality, which describes whether a patch occupies a central position in the habitat network.
Figure 14: Regional-scale connectivity analyses based on least–cost paths for patches greater than 10 ha using Graphab. Circular graduated symbols located at the centre of patches describe the Eccentricity, which is a measure patch isolation.
Figure 15: Regional-scale connectivity analyses based on least-cost paths for patches greater than 10 ha using Graphab. Circular graduated symbols located at the centre of patches describe the Flux, which is a measure of area-weighted rate of movement.
3.2.1. Sensitivity analysis

A simple sensitivity analysis of the results was conducted looking at the impact of interpatch dispersal distance on landscape level graph-metrics IIC and Flux. The sensitivity analysis shows that changing interpatch dispersal distance will affect the connectivity outputs measured (Figure 16). However, the relationship between interpatch dispersal distance and graph-metric values showed a relatively consistent linear positive trend without any major thresholds in interpatch dispersal distance observed. Further sensitivity analysis can be found in Lechner et al. (2015) and Lechner and Lefroy (2014).

Figure 16: Sensitivity analysis for (left) IIC and (right) flux versus the interpatch-crossing distance. For this analysis, the gap-crossing distance was ignored.
4.0 Discussion

4.1. Overview

The analysis found that the remaining woody vegetation in the Greater Hunter is mostly contiguous, found in large patches and/or functionally connected with 96% of the woody vegetation found within two large components in the east and west. At the regional-scale and greater the lack of connectivity between these two components is the largest issue. When looking only at the local scale only the contiguous large patches stood out as being important for connectivity. Due to the distribution of patch sizes, with a large proportion of vegetation (~80% of the woody vegetation patches found within the 24 largest patches) these patches tended to have high patch-scale graph-metric values as would be expected. While smaller patches had lower patch-scale graph metric values, as they were not as critical for connecting large areas of vegetation. Identifying small individual patches that are critical for connectivity is more logical on a case by case basis in response to a regional plan for development (for example, Lechner et al. 2015a).

The greatest issues associated with connectivity of woody vegetation identified was the disconnect between the east and west and the importance of the Greater Hunter region for connecting vegetation in the neighbouring regions. The ecological impact of this disconnect is outside the scope of this study, however, the importance of the north-south connection is highlighted in the Greater Eastern Ranges wildlife corridor plan.

Fragmentation and isolation is likely to also be problematic for species and communities that depend only on the small fragmented patches found within the central region of the Greater Hunter. Further local-scale analysis or single species/community analysis is required to identify these specific impacts.

Future work in the Greater Hunter need to look at the impact of spatial uncertainty on the connectivity modelling outcomes from classification error in the remote sensing data, choice of spatial unit and ecological parameters (Lechner et al. 2009; Arponen et al. 2012; Lechner et al. 2012; Rudnick et al. 2012). Furthermore, it is important that the results of the connectivity modelling are understood in context within individual species habitat requirements that are represented by the modelling. Connectivity is only one of many ecological processes that ensures the persistence of species.

4.2. Conclusions

The assessment of connectivity of woody vegetation in the Greater Hunter shows that the region is divided into two large components by a fragmented central area. Future restoration should focus on connecting these two regions and aim to reduce impacts within these areas. Modelling of development and restoration scenarios with respect to regional development plans would aid in the assessment of assessing conservation and restoration priorities.
References

Doerr VAJ, Doerr ED & Davies MJ (2010) Does structural connectivity facilitate dispersal of native species in Australia’s fragmented terrestrial landscapes?

Hub Acknowledgements

The Landscapes & Policy Research Hub is supported through funding from the Australian Government’s National Environmental Research Program and involves researchers from the University of Tasmania (UTAS), The Australian National University (ANU), Murdoch University and the Antarctic Climate & Ecosystems Cooperative Research Centre (ACE CRC), Griffith University and Charles Sturt University (CSU).

Scientific leadership and contributions are from a consortium of schools from these organisations including: UTAS Centre for Environment, UTAS School of Geography and Environmental Studies, UTAS School of Economics and Finance, Murdoch University School of Veterinary and Life Sciences, The ANU Fenner School of Environment & Society, ACE CRC Climate Futures, UTAS School of Zoology, UTAS School of Plant Science - Environmental Change Biology Group, Griffith University Griffith Climate Change Response Program and CSU Institute for Land and Water Society.

www.nerplandscapes.edu.au